Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

نویسندگان

  • Stefania Pellegrino
  • Matthias Altmeyer
چکیده

Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.

Poly(ADP-ribosyl)ation is a posttranslational modification of proteins, which is mainly catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) by using NAD(+) as substrate and is directly triggered by DNA strand breaks. Under mild genotoxic stress poly(ADP-ribose) (PAR) formation plays an important role in DNA repair whereas severe genotoxic stress and the ensuing overactivation of PARP-1 induce c...

متن کامل

The Sound of Silence: RNAi in Poly (ADP-Ribose) Research

Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or ...

متن کامل

Poly-ADP-ribosylation signaling during DNA damage repair.

Poly-ADP-ribosylation is a post-translational modification generated in high amounts by poly-ADP-ribose polymerases (PARPs) in response to cellular stress, especially genotoxic stimuli. DNA damage-induced PARylation significantly changes local chromatin structure and triggers the accumulation of several DNA damage response (DDR) proteins at the DNA lesions. In this review, we will discuss the r...

متن کامل

Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells.

Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin af...

متن کامل

Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.

Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in genetics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016